DINDASEDGE 12

Laminated Veneer Lumber

Dindas Australia's LVL, DINDASEDGE 12, is a great choice for concrete foundation, floor, and formwork applications. Its solid construction is both sturdy and lightweight, providing optimal stability and durability.

Red coating with Arrised Edges

- Has a red coating that is water-resistant and durable, making it easy to identify.
- It is manufactured with Arrised edges for safer and easier handling.

Six High Span Option Sizes (6 m length packs)

- Cost-effective sizing solutions that suit all your project requirements.
- Individually labelled and QR code marked for direct product information access.

High-Performance Engineered Wood Product

- Each piece is highly consistent in the way it performs under load.
- Manufactured with type 'A' (marine) bond, renowned for its structural strength and long-lasting durability.

Dimensional Uniform Stability (±1 mm)

- Features a solid construction that is both sturdy and lightweight, ensuring maximum stability and durability.
- It is free of traditional timber defects like gum pockets and strength-reducing knots.

Sustainable Sourcing

- As a Carbon Warrior partner, we only work with suppliers with verified Wood Source Certifications for responsible and sustainable timber.
- Chain of Custody certification compliant for well-managed and sustainable forests.

DINDASEDGE 12 Product Specs

APPLICATIONS: External.

DindasEdge 12 is specifically manufactured for concrete floor

and foundation formwork.

Note: DINDASEDGE 12 should only be used for its intended purpose.

MAXIMUM LENGTH: Only available in 6m packs

DEPTH OPTIONS: 100, 150, 170, 200, 240, 300 mm

WIDTH OPTIONS: 36 mm

TIMBER GRADING: LVL 12

TREATMENTS: Available as H2S

MANUFACTURE: AS/NZS 4357.2 Series of Standards

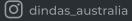
CERTIFICATIONS: JAS/ANZ

Advantages

- Ideal for concrete floor and foundation formwork, offering unparalleled strength, durability, and load-bearing capacity.
- It is lightweight and flexible, making it a more efficient installation option compared to traditional timber alternatives.
- Offers a uniform, flat surface finish.
- It can reduce the number of joints and waste by using long lengths.
- Features a solid construction that is both sturdy and lightweight, ensuring maximum stability and durability and superior strength over traditional timber.
- It is manufactured with type 'A' (marine) bond, renowned for its structural strength and long-lasting durability.
- The ideal choice for construction projects where strength and stability are crucial.
- Offers Dimensional Uniform Stability (±1 mm)
- Six high-span option sizes (6 meters).
- Available as H2S.
- Chain of Custody certification compliant for well-managed and sustainable forests.
- It is supported by Dindas Design Suite technical and software support.
- Highly resistant to warping, splitting and shrinkage damage due to its uniform structure and lack of knots.
- Every DINDASEDGE 12 item is marked with a Dindas brand for easy identification.

DINDASEDGE 12 Pack Sizes

Depth (mm)	Thickness (mm)	Pieces per Pack	Weight
100	36	90	2.30 kg/lm
150	36	63	3.46 kg/lm
170	36	54	3.92 kg/lm
200	36	45	4.61 kg/lm
240	36	36	5.53 kg/lm
300	36	27	6.91 kg/lm


DINDASEDGE 12 Characteristic Values

Characteristic Values for Design Limit States			
f' _b	Bending strength ¹	46MPa	
f' _t	Tension strength - parallel to the grain ²	20MPa	
f'_{tp}	Tension strength - perpendicular to the grain	0.5MPa	
f' _c	Compression strength - parallel to the grain	30MPa	
f' _{cp}	Compression strength - perpendicular to the grain	-	
f'p	Bearing strength - perpendicular to the grain	10MPa	
f' _I	Bearing strength - parallel to the grain	30MPa	
f's	Shear strength	4.5MPa	
f' _{sj}	Shear at joints	4.5MPa	
MOE	Modulus of Elasticity	12,000MPa	
MOR	Modulus of Rigidity	660MPa	
ρ	Density (approximate)	590 - 600kg/m³	
JD	Joint Group for connector design (nails, screws & bolts)	JD4	
SD	Strength Group	SD5	

- 1. For beams bigger than 95mm in depth, the characteristic values are obtained by multiplying the value in this Table by (95/d)0.167, where "d" is the depth of the section.
- 2. For tension members with a cross-sectional dimension greater than 150mm, the characteristic values are obtained by multiplying the value in this Table by (150/d)0.167, where "d" is the width or largest dimension of the cross-section.
- 3. Tapered and notched beam is allowable, although it requires certifications and/or design checks by an engineer.
- 4. Notches, cuts and holes in beams, bearers, joists and rafter members may have penetration holes and notches performed in accordance with AS1684.2 Clause 4.1.6 & Figure 4.1. The cutting, notching & drilling of components within structures that do NOT meet these criteria is outside the scope of this document and should be referred to an experienced timber engineer for design checks & certification.

For more information visit dindas.com.au

VICTORIA (Head-Office)
58 Whiteside Road, Claytor

58 Whiteside Road, Clayton Sth Phone 03 8540 0500 Fax 03 8540 0599 vicsales@dindas.com.au

QUEENSLAND

433 Wondall Road, Tingalpa Phone 07 3249 9888 Fax 07 3249 9899 qldsales@dindas.com.au

NEW SOUTH WALES

138 Dunheved Circuit, St Marys Phone 02 9673 8000 Fax 02 9673 8099 nswsales@dindas.com.au